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An accelerated optimization technique combined with a stepwise deflation procedure is 
presented for the efficient evaluation of the p (p < 20) leftmost eigenvalues and eigenvectors of 
finite element symmetric positive definite (p.d.) matrices of very large size. The optimization is 
performed on the Rayleigh quotient of the deflated matrices by the aid of a conjugate gradient 
(CG) scheme effectively preconditioned with the incomplete Cholesky factorization. No 
“a priori” estimate of acceleration parameters is required. Numerical experiments on large 
arbitrarily sparse problems taken from the engineering finite elements (f.e.) practice show a 
very fast convergence rate for any value of p within the explored interval and particularly so 
for the minimal eigenpair. In this case the number of iterations needed to achieve an accurate 
solution may be as much as 2 orders of magnitude smaller than the problem size. Several 
results concerning the spectral behavior of the CC preconditioning matrices are also given 
and discussed. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

The efficient treatment of large numerical models requires computational techni- 
ques which are not yet safely established since the computer technology is still in 
progress and the size of the problems that can be addressed is continuously 
growing. We present here an efficient technique for estimating the smallest eigen- 
pairs of large sparse matrices. Most of the methods available for the solution of the 
eigenproblem 

Au = /Iv, 

where A is a sparse symmetric matrix, have been reviewed by Parlett [ 11. A vast 
class of techniques for a matrix A which is also positive definite rely on the 
optimization of the Rayleigh quotient q(x): 

x=Ax 
d-4 x) = q(x) = T xx 

It is well known that ratio (1) is stationary if x is an eigenvector of A and q(x) 
takes on the maximal and minimal value for the highest and lowest eigenvectors, 
respectively. 
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The minimization of (1) by a gradient (steepest descent) scheme was first 
described by Hestenes and Karush [2, 31, see also Hestenes [4]. Unfortunately the 
steepest descent converges very slowly if the matrix is not small. A more reliable 
algorithm, referred to as “coordinate relaxation,” was subsequently studied by 
Faddeev and Faddeeva [S] and reanalyzed by several other authors (Nesbet [6 3; 
Bender and Shavitt [7]; Shavitt et al. [8]; Falk [9]). Nisbet [lo], Ruhe [ll], and 
Schwarz [12] suggested an improvement of the method with the aid of an 
acceleration parameter o in complete analogy to SOR as applied to the solution of 
linear sets of equations arising from the finite difference integration of elliptic boun- 
dary value problems. However, the above authors failed to provide a general theory 
for the preliminary assessment of the best over-relaxation factor which is therefore 
to be determined empirically for any given matrix A. 

An important modification of the gradient technique for the optimization of (1) is 
represented by the method of conjugate gradients (CG) originally developed by 
Hestenes and Stiefel [13] for the solution of linear symmetric p.d. systems. Along 
this line are the works by Bradbury and Fletcher [ 141, Fried [15, 161, Gerardin 
[17], and Ruhe [lS]. In a recent paper Papadrakakis [19] has combined the CG 
scheme with the symmetric successive coordinate over-relaxation but a serious 
deficiency of this approach is again the need for improving the convergence through 
an optimal acceleration factor which is problem dependent and generally unknown 
“a priori.” 

Iterative algorithms based on convergent splittings have been analyzed by Ruhe 
[20] and also proposed by Evans and Shanehchi [21] who suggested a more 
efficient splitting choice. It is to be noted that in these works too, the convergence is 
to be properly speeded up by the use of a relaxation parameter which is difficult to 
estimate for general matrices. 

All these well-established techniques become computationally expensive for large 
size problems and particularly so if a number of the smallest eigenpairs is sought. 
According to Sameh and Wisniewski [22] “no efhcient methods for simultaneously 
obtaining several eigenvalues and eigenvectors is available.” 

Actually iterative approaches for the simultaneous computation of the leftmost 
eigenpairs based on either trace minimization (Sameh and Wisniewski [22]) or 
multiple Rayleigh quotient optimization (Longsine and McCormick [23]; Schwarz 
[24]) have lately been developed. Unfortunately they are not easy to implement 
practically in a computer code and their numerical behavior has been explored 
mainly with small and unrealistic sample problems. 

In recent years a modification of the method of conjugate gradients (MCG 
modified conjugate gradients) has significantly improved the performance of 
this scheme as applied to the solution of large sparse p.d. systems (Kershaw [25]; 
Concus et al. [26]; Meijerink and van der Vorst [27]; Axelsson [28]; Gambolati 
[29, 301; Manteuffel [31]; Gambolati and Volpi [32]). The number M of 
iterations required to achieve a relative accuracy E is related to the square root of 
the spectral condition number 5 of the MCG iteration matrix E = AK- ‘, K-’ being 
the CG preconditioning matrix. It may be shown (Axelsson [33]) that: 
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M=int 
( 
i&In:+ 1 

) 

where t(E) = n,(E)/n,(E), A, > 1, > ... > 1, being the ordered real positive eigen- 
values of E. The previous equation holds for values of 5 not too close to 1 and may 
be safely used for < > 3 or 4. 

For any given problem the behavior of < is dependent on the preconditioning 
matrix K- ‘. Many preconditioners belong to the class of the incomplete Cholesky 
factorization (Eisenstat [34]; Nour-Omid [35]; Ajiz and Jennings [36]; Jackson 
and Robinson [37]). For f.e. systems arising from the numerical integration of 
subsurface flow and structural equations the incomplete decomposition, referred to 
as ICCG(0) by Meijerink and van der Vorst [27], has proven extraordinarily effec- 
tive (Gambolati and Perdon [38]). 

Attempts have also been made to extend the MCG scheme to nonsymmetric 
matrices (Gambolati [39]; Axelsson [40]) but the results have not been so 
successful. 

The idea underlying the present work is to apply a similar preconditioning 
procedure for the CG optimization of the Rayleigh quotient (1) together with a 
shifting deflation technique to assess the p (with 15 < p < 20) leftmost eigenpairs of 
A. Early results from the eigenanalysis of very large matrices (Gambolati and 
Perdon [41], Perdon and Gambolati [42]) emphasize the promising features of 
the accelerated conjugate gradients. 

In this paper the algorithm for the evaluation of the p leftmost eigenpairs by the 
stepwise deflating MCG approach is first outlined. The iterative deflation is concep- 
tually similar to that employed by Shavitt et al. [S], Falk [9], and Schwarz [12]. 
Schwarz [24] raised the concern that such a procedure would not work satisfac- 
torily but it will be shown that this is not true in a finite element context. 

The high numerical performance of the combined scheme is demonstrated for 
some large size problems related to the f.e. integration of flow and elasticity 
equations. An extensive analysis of the behaviour of t(E) during the deflation 
process is also supplied. It is shown empirically that the number of iterations 
required for an accurate solution is smaller when the extreme eigenvalue is to be 
assessed and increases as the position of the desired eigenvalue moves rightward 
within the spectral interval. However for all the values of p explored in the present 
analysis (15 < p < 20) the convergence proved to be good. For any of the given 
examples the structure of the matrix, the distribution of the p leftmost eigenvalues 
and the MCG convergence profiles are presented and discussed. 

2. ITERATIVE OPTIMIZATION OF RAYLEIGH QUOTIENTS 

2.1. The Accelerated Conjugate Gradients for the Minimal Eigenvalue 
and Eigenvector 
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Denote by Ai b A2 2 . . . b AN the real positive eigenvalues of A and by 
u1, v2, .“, vN the corresponding eigenvectors. In the engineering practice it is well 
known that the smallest eigenpairs correspond to the relevant modes of oscillation 
of the system being numerically analyzed while the highest have very little physical 
meaning as they are severely influenced by the truncation errors. Therefore we focus 
our attention on the p leftmost stationary values of (I), starting from the minimal 
eigenpairs, i.e., 1, and vN. 

Let us indicate by g(x) and H(x) the gradient and the Hessian of the Rayleigh 
quotient, respectively. We readily obtain 

s(x)=q’(x)=-& [Ax-q(x)xl (2) 

fm) = q”(x) =--& iA -4(x) I- C&)1 XT-- xc&wI. (3) 

The rate of convergence of an optimization algorithm for the computation of AN 
is dependent on the spectral condition number t(H) of H(u,), namely on the ratio 
between the largest and the smallest (different from zero) eigenvalue of the Hessian 
evaluated for x = uN (see Ruhe [ 181). From (3) we have immediately: 

t(H(uN)) = A “1-J; . (4) 
N I N 

The traditional CG recursive equations to minimize (1) may be found in several 
papers, see, for instance, Bradbury and Fletcher [14], Ruhe [18], and Schwarz 
[24]. To derive the MCG scheme we proceed as follows. Set 

y=xx, (5) 

where X is an auxiliary symmetric matrix and replace (5) in (1). We may write 

41(Y) = 
yTX-‘AX-‘y yTGy 

(6) 

where G= X-‘AX-’ and K-’ =X1X-‘. We note that G and Kp’ are both sym- 
metric p.d. and Eq. (6) may be regarded as the Rayleigh quotient of the generalized 
eigenproblem Gy = AK-‘y. If we minimize the right-hand side of Eq. (6) by the CG 
scheme (e.g., Ruhe [18]) and then restore the original variable x through Eq. (5) 
we obtain the following MCG relationships 

gk=2 
AXtc - dxk) xk 

T 
xk xk (7) 
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@k--l= - PL 1 AK- ‘a 

P:LAP~-I 

PO=K-‘go, 

where 

ak = OS(nd - mb + &)/(bc - ad) 

a = p:Ax, b = P:AP~ 

c = p;xk d= P:P, 

m = xrxk n = x:Axk 

A = (nd- mb)’ - 4(bc - ad)(ma - nc). 

We have 

dXk) + 2, xk+vN 

K-’ is the preconditioning matrix of the MCG scheme (7). If K= Z, Eqs. (7) turn 
into the usual CG iteration. The initial vector x0 is arbitrarily chosen. In the 
leftmost stationary point y, (for which ql(yN) = A,,,) the Hessian of q,(y) takes on 
the expression 

WYN) = yTKZly CG-~NK-‘I. 
N N 

We observe that G-INK-’ is similar to (A - J,Z) K-‘. 
If we assume that K-’ equals A-‘, i.e., the inverse of A, we get the following 

spectral condition number for H: 

For large finite difference or finite element matrices arising from the engineering 
practice usually 

and hence ratio (9) is much smaller than (4). Consequently the MCG algorithm 
with K-’ = A-’ would converge much faster than the traditional CG scheme. 

Actually A-’ is unknown and its calculation would be expensive and require 
much storage. We may use instead an approximation to A-’ as is efficiently 
provided by one of the several incomplete Cholesky decompositions of A (see 
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[25527, 361). As was already mentioned in the Introduction an excellent choice for 
the solution of linear systems in a f.e. context turned out to be 

K-’ = (LLT)-‘, (10) 

where L is the incomplete triangular factor of A having the same sparsity pattern as 
A. Experience has shown (Gambolati and Perdon [38]) that {(A(LLT)-‘) is 
several orders of magnitude smaller than @A) and therefore (10) may be viewed as 
a good approximation to A-‘. It follows that the modified conjugate gradients (7) 
with a preconditioning matrix equal to (10) are indeed expected to converge faster 
than the CG scheme. 

2.2. The Iterative Stepwise Procedure for the Next Higher Stationary Values 

Define the new matrix A, as 

A, = A + (a, -E.,,,) v,v;, (11) 

where A, and vN have just been computed as described in the previous section. If 
the scalar ~1, is chosen so as to be larger than LN _, and possibly (but not 
necessarily) smaller than AN _ z, i.e., 

I 
A 

“N-I<a,<AN 2 

the ordered eigenpairs of A, turn out to be: 

AN-,, a,, 2”,,-2, . . . . 2, 

UN-,, vN, UN-2,~ 01. 

To prove the previous statement one should recall that the vectors v,, u2, . . . . uN 
form an orthonormal set. 

The leftmost eigenvalue and eigenvector of A, are now LN _, and uN ~, and may 
be computed by the MCG procedure given in Section 2.1, after replacing A by A, 
and with the aid of the same preconditioning matrix (LLT)- ‘. In the numerical 
models of large hydrodynamic systems or mechanical structures I, < i,, the 
characteristic values exhibit to some extent a uniform distribution between the 
extreme bounds and the separation is usually not too bad. Thus it may easily occur 
that A,,-, is quite close to 1, and yet well separated from it, from a numerical 
point of view. Parameter a, can be taken so that the shift CI, - A, is a very small 
quantity compared to the length of the spectrum of A and <(A, K-‘) is not 
appreciably larger than <(AK-‘). Equation (12) may be hard to satisfy in practice 
and we may take ~1, in order that I, and uN are not shifted too far beyond E.,- , 
and uN-, and (LLT)-’ still represents an acceptable estimate of the inverse of A,. 
(On the other hand, a, should not be close to I,-, to prevent the retardation of 
the convergence of the algorithm to uN- ,.) In practical computations the 
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appropriate a1 is not known a priori and has to be determined iteratively. We form 
the matrix 

AI’)= A+(a’,‘)-1,) v,vL, i = 0, 1, . ..) (13) 

where we set 

ai”) = /IL,, ay)=fla’,‘-‘), /j> 1. 

The overall procedure works as follows. Choose /3 > 1. If a’p) is smaller than A,,-, 
increase a(1’) according to the criterion given above until the MCG scheme 
(Eqs. (7)) applied on Ai’) converges to an eigenvalue which is different from av). 
This will be A, _, . Continue the iterations to ensure a good estimate for vN _, as 
well. Remember that the convergence to the minimal eigenvalue is twice the 
convergence of the corresponding eigenvector (Schwarz [ 121; Ruhe [ 181) and that 
a good evaluation for vN- 1 is required to guarantee an effective deflation procedure. 
It is to be noted that the numerical trials performed to obtain a value for a(li) greater 
than A,,-, are not computationally expensive if one starts from an initial guessed 
solution x0 = vN. When al’) <A,-, the MCG iteration gives q(A’,‘), xk) + a(1’) and 
xk -+ L’,,,, but as soon as ay)> A,- i the differences dfi = [q(A(I”, xk) - a(,i)l/a(,l) and 

th,* magmtude of ‘i 
r(t) - ) Aji)xk - q(A,’ , xk) x,J/JxkJ tend to increase with k. A test is defined for dl;!. If 

yi exceeds a specified tolerance T, then this means that 
q(Ar), xk) and xk are converging towards A,- i # ay) and vN- ,. To improve the 
convergence the iteration is restarted with an arbitrary new vector w (different from 
v,,,) and is completed when a sufficiently small r(li)k value is obtained. If dy)k does not 
appreciably increase after a preselected number I/ of iterations we increase a!‘) and 
start again the MCG scheme with x0= vN. It is interesting to notice that in 
principle the conjugate directions could not move from the stationary point vN. In 
practice, however, due to roundoff errors after an initial almost static behavior, dc,i! 
grows with k and thus we know that the stationary point uN is no longer the 
minimal value of the Rayleigh quotient of A,. 

Making use of the already computed eigenpairs the shifting deflation procedure 
given above is readily extended to the assessment of I,- j and vNmj through the 
matrix A!‘). J . 

A~‘)=A+(ol,!“-1,)u,v~+(aj’)-~,_,)v,_,v~_,+ ... 

+(a!‘)-~,~i+,)u _. vT_. J N J+l N J+l j= 1, 2, . . . . p; i= 1, 2, . . . . (14) 

where now we have to look for a scalar a:‘) satisfying inequality (15): 

(15) 

It is worth noting that the shifts in Eq. (14) accumulate the leftmost (N-j+ 1) 
eigenpairs of A in a unique stationary point where the Rayleigh quotient of Al’) 
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takes on the value ati) corresponding to the distinct eigenvectors 
vN, vN-tr . . . . vN-~+l. Multiile eigenvalues close to the minimal one may greatly 
slow down the convergence rate and make it more difficult to recognize whether c$j) 
has overcome AN-j. However the variable shifts defined by Eq. (14) produce the 
smallest modification of A consistently with the deflation approach, thus enhancing 
the probability for KP ’ to be still an acceptable approximation to (A;‘)) ~ ‘. Actually 
the numerical results given in the next section shows that &Aj’)K-‘) increases 
slowly with j, at least for not too large j-values thus showing that (LL’) -’ remains 
an effective MCG preconditioning matrix as the deflation proceeds. To prevent 
retardation of the convergence a)‘) should not be too close to 1, ~,. An optimal aji) 
realizes a satisfactory trade-off between the two opposite needs for having A!‘) close 
to A (small a:‘)) and the multiple stationary point vN, vNP ,, . . . . vNPi+, far from 
UN-j (large a!‘)). 

One last consideration bears mention. Matrices A;‘) are not sparse, consequently 
the stepwise procedure described above is to be performed implicitly by saving in 
core memory all the eigenpairs currently found. 

3. NUMERICAL RESULTS 

The performance of the deflation-MCG scheme presented in this paper has been 
analyzed for the computation of the p (with 15 < p < 20) leftmost eigenvalues and 
eigenvectors of 4 large sparse symmetric p.d. matrices whose size N ranges from 156 
to 2304. They arise from the finite element integration of the flow equation in 3D 
multiaquifer systems and of the elasticity equations of layered 3D structures subject 
to vertical and horizontal land subsidence. The order of the problems is 156, 812, 
1802, and 2304. The overall number of nonzero A coefficients is 996, 5458, 24468, 
and 18712, respectively, to which a sparsity percentage of 95.9%, 99.2 %, 99.2%, 
and 99.6% corresponds. The structure of the matrices may be seen in Figs. 1, 2, 3, 
and 4. Note that the general pattern is that of a banded structure with a somewhat 
irregular distribution of the nonzero terms within the band. 

FIG. 1. Structure of the f.e. matrix for the test problem with N= 156 (integration of the steady 
diffusion equation in a 3D axisymmetric system). 
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FIG. 2. Structure of the f.e. matrix for the test problem with N = 812 (integration of the unsteady 
diffusion equation in a 3D axisymmetric system) 

FIG. 3. Structure of the f.e. matrix for the test problem with N= 1802 (integration of the elastic 
equilibrium equations in a 3D axisymmetric system). 

FIG. 4. Structure of the te. matrix for the test problem with N = 2304 (integration of the steady flow 
equation in a 3D multiaquifer system). 
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The convergence is monitored by the use of two quantities 

ek, { = 
4j(xk)-AN-i 

;1 N--j 
(16) 

(17) 

where qj(x,)=X,TAiX,TIX,TX,, ek,,, is the relative error of the kth approximation 
qj(xk) to A,- j and ik,.j is the residual for the estimate xk of uN _ j. In Eq. (16) AN.. , 
is the (N- j)th characteristic root computed to the double precision ( 16 decimal 
digits) machine accuracy, while in formula (17) 1.1 stands for the Euclidean norm. 

Since the eigenpairs already determined are currently employed by the shifting 
process and the convergence rate of the eigenvalue approximation is twice that of 
the eigenvector approximation, each iterative MCG cycle is completed when ek., 
and rk.i have achieved a rather small value. 

Figures 5, 6, 7, and 8 show the behavior of ek, j vs the number of iterations k for 
several j values and the matrices with N = 156, 812, 1802, and 2304, respectively. 
Note that j = 0 means the minimal eigenvalue of the original matrix A. The dis- 

FIG. 5. Relative errors vs number of iterations in the computation of the leftmost p + 1 (with p = 20) 
eigenvalues of the f.e. matrix with N= 156. 
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FIG. 6. The same as Fig. 5 for the f.e. matrix with N= 812 (p = 20). 
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FIG. 7. The same as Fig. 5 for the f.e. matrix with N = 1802 (p = 20). 
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FIG. 8. The same as Fig. 5 for the f.e. matrix with N=2304 (p=20). 

tribution of the smallest eigenvalues of A thus found is given in Table I which also 
reports the p-values operatively adopted to construct o1J’) according to criterion 
(15). We note that ato) was sufficient for almost all eigenpairs and that i= 1 was 
necessary in very few cases. The convergence rate is sensitive to /I as is shown in 
Figs. 9, 10, and 11, obtained with /I= 1.25, 1.7, and 5, respectively, for the matrix 
with N = 156. (A similar result is given in Fig. 5 for /? = 2.2.) 

The best convergence is that displayed by Fig. 10. Figure 9 points out that, if /I is 
too small, there may be the accumulation of the shifted eigenpairs in the vicinity of 
the wanted solution with a very slow initial convergence (e.g., j= 5, 10, 15). 
Figure 11 points out that, if b is too large, we may have a slow convergence for the 
largest j’s, where (UT))’ no longer constitutes an effective preconditioning matrix 
for the CG scheme. 

Table II gives some representative results about the computational burden for the 
determination of an appropriate c$‘) value for various p’s as compared to the overall 
number of iterations needed to find the desired eigenvalue ;1, _ j (N = 156, 
j= 1, . ..) 5, 7, 10, 15, 20). We have set the number of trial iterations I,= 10, the 
tolerance T,= lo-*, and the restart vector w = (1, . . . . 1)‘. 

Table II shows that a satisfactory value for p, which is problem dependent, is to 
be determined experimentally. Fortunately the procedure appears to be quite robust 
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FIG. 9. Convergence profiles for several of the 20 leftmost eigenvalues of the f.e. matrix with N = 156 
for /I = 1.25. 

e 

ITERATIONS 
FIG. 10. Convergence profiles for several of the 20 leftmost eigenvalues of the f.e. matrix with 

N= 156 for I= 1.7. 



EIGENSOLUTION OF LARGE MATRICES 55 

ITERATIONS 

FIG. 11. Convergence profiles for several of the 20 leftmost eigenvalues of the f.e. matrix with 
N=156for p=5. 

even if the intermediate p values are characterized by a fairly smaller number of 
cumulative iterations (last column of Table II). A few experiments may suggest 
good indications as to the right fi. For instance B = 2 proved appropriate for all the 
finite element matrices analyzed in the present paper. 

TABLE II 

Number of Iterations a Which Proved Necessary to Recognize That an Appropriate Value for 0~)‘) 
Was Obtained and Total Number of Iterations r Needed Both to Find the Right ajO 

and to Compute the Eigenvalue AN-i for Several fi and j (N= 156) 

1.25 a 42 31 37 35 48 39 25 23 45 - 
I 69 88 69 90 140 80 95 135 173 939 

1.70 a 24 16 15 13 15 13 12 3 I - 
I 41 50 44 52 54 49 12 18 124 510 

2.20 P 12 10 10 13 10 3 3 2 6 - 
t 62 31 33 40 60 51 54 117 125 519 

5.00 a 2 3 3 3 2 2 2 2 2 - 
t 28 34 50 41 58 144 110 178 202 851 
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The most favorable convergence conditions would theoretically occur if 
do’ = A,- j, as in this case we would have the accumulation right in I,_ j and Aj as 
ciose as possible to A. It may be interesting to derive “a posterior? the 
corresponding profiles. These are shown in Fig. 12 for N = 156 and are actually bet- 
ter than the equivalent profiles of Figs. 9, 10, and 11. To obtain the results of 
Fig. 12, aJo) = I,- j has been used along with the eigenvectors v,, vN- r, . . . . v,,- j+ I 
already computed. 

In this limiting case the behavior of the spectral condition number of Ej = A,K-’ 
is provided in Fig. 13. Note that generally <(Ej) increases with the deflation level j, 
after an initial nearly constant behavior. This is an evidence that (UT) - ’ is still a 
good approximation to A,: l for several j values. For N = 2304 &Ej) is practically 
constant up to p = 20 and for N = 1802 it grows very slowly. It may therefore be 
concluded that the preconditioning discussed in the present paper may be expected 
to be effective for several steps of the deflation process. 

Now we elaborate a little more on the implementation of scheme (14), on the 
automatic determination of the right aJi) and on the effectiveness of our pre- 
conditioning procedure. 

Figure 14 gives some possible practical behaviors of $,\ and is drawn for j= 2, 
p = 1.25, and N = 156 (for a cross reference see also Fig. 9 and Table II). 

FIG. 12. Convergence profiles for several of the 20 leftmost eigenvalues of the f.e. matrix with 
N = 156 when uj”’ = A,,- j is assumed (j = 0, 1, . . . . 20). 
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FIG. 13. Behavior of the spectral condition number of the matrices Ej= AjKml when uj”)= I,-, is 
assumed (j = 0, 1, . . . . 20). In real calculations c(E,) is equal or greater than the values given in this figure. 

If we set x~=u~-~+~, as long as 01;‘) < I,- j the residual (17) remains 
approximately constant with the iteration k and typically exhibits small oscillations 
(profile (a) of Fig. 14). 

When ,:O becomes larger than ;1,- j, r& behaves like profile (b) of Fig. 14, where 
three distinct segments may be recognized: initially nearly constant and then an 
increase followed by a progressive decrease when xk converges to oN- j (in principle 
Y& should always be zero as a)!‘) and uN- j+ I identify a stationary point; in practice 
due to roundoff errors the behavior displayed by profile (b) occurs and the iterates 
xk moves progressively far from uN- j+ i to converge eventually to vNej). As soon 
as we note that $5 increases (second type segment of profile (b) in Fig. 14) the 
iteration is restarted with a different choice for x0 (e.g., x0 equal to (1, . . . . l)T). Then 
the overall convergence is accelerated as shown by profile (c) of Fig. 14. 

Finally we provide some documentary evidence about the advantage of precon- 
ditioning the CG scheme. Table III gives the spectral condition number r of the 
Hessian (8) when K-’ is set equal to I (identity matrix), (UT)-’ (L being the 
incomplete Cholesky factor of A), and A-‘, for the computation of the minimal 
eigenpair A, and vN. We remind that the choice K = I is equivalent to applying the 
ordinary CG iteration. It may be observed that t(H) decreases drastically when CG 
is preconditioned with K- ’ = (UT) - ‘. A further decrease occurs if K- ’ equals 
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FIG. 14. Behavior of the residual r!$ vs the number of iterations in the search for the (N- j)th 
eigenpair of the f.e. matrix with N = 156: x0 = u~-~+, and ay)<i,-j (profile a); xO=uN~,+i and 
a”)>l N-, (profile 
kspectively. 

b); x,, = (1, . . . . 1)’ and a:‘)> A,,,- j (profile c). The values for j and p are 2 and 1.25, 

A -I. Table III shows that the incomplete Cholesky factorization represents a quite 
effective preconditioning procedure for f.e. eigenproblems and is expected to 
enhance greatly the performance of the traditional conjugate gradients. It also gives 
a satisfactory account of the accelerated convergence profiles reported in Figs. 5, 6, 
7, and 8. 

TABLE III 

Spectral Condition Number of the Hessian (8) for Different 
Preconditioning Matrices K-l in the Computation of the 

Minimal Eigenpair I, and vN 

t(H) 

N K-‘=I K-’ = (LLT)-’ K-l=&’ 

156 0.97 x 108 0.60 x 102 0.20 x 10’ 
812 0.19 x 10’2 0.45 x 102 0.12x lo2 

1802 0.21 x 10’0 0.69 x lo2 0.45 x 10’ 
2304 0.53 x 10’ 0.11 x 10’ 0.23 x 10’ 
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4. CONCLUSIONS 

The following points are worth summarizing: 

(1) An efficient stepwise deflation procedure and an accelerated conjugate 
gradient technique have been developed and applied to the numerical computation 
of the p (p < 20) leftmost eigenpairs of symmetric p.d. matrices arising from finite 
element problems of structural mechanics and subsurface hydrodynamics. 

(2) At the jth step of the deflation process, the eigenpairs already evaluated 
are shifted in a unique stationary point to the right but not too close to the new 
minimal eigensolution I,- j and uN- j of the deflated matrix Aj. To ensure an effec- 
tive CG preconditioning the shift 011’) should not occur far beyond the desired 
value AN-j. 

(3) The selection of an appropriate parameter fl for the iterative updating of 
the values for the shift a$‘) should not prove a difficult task. However, some 
preliminary trials are recommended in order to get a very rough acquaintance with 
the actual values and distribution of the leftmost characteristic roots of the specific 
eigenproblem to be solved. 

(4) The real convergence rate of the MCG scheme to the minimal stationary 
point of a specific Rayleigh qtiotient qj(x) depends on the shifting value a,‘) and also 
on the separation between ANej and the next higher eigenvalues. If the separation is 
not too bad and aji) is far enough from I,- j, the MCG iterations should increase 
with the deflation level j, namely with the parallel increase of the spectral condition 
number QA,K-‘). However, the increase is not necessarily monotonic with j 
depending ultimately on the actual distribution of the eigenvalues close to I,,,- j. 
The f.e. experiments have shown that <(A,K-‘) grows slowly with j, i.e., (LLT)-’ 
appears to be a satisfactory preconditioning matrix for the CG algorithm applied to 
the computation of the smallest stationary point of e(x), j = 0, . . . . p, with p Q 20. 

(5) It might be worth comparing the computational cost of the stepwise 
iterative approach developed in the present paper with alternative procedures based 
on the simultaneous evaluation of the p leftmost eigenpairs (Longsine and 
McCormick [2, 33; Sameh and Wisniewski [22]; Schwarz [24]). Further 
investigations in this direction are currently under way at the University of Padua. 
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